Tampons amortisseurs en polyuréthane élastomère

Conviennent particulièrement à:
- La construction des ponts roulants
- L'ingénierie mécanique en général
- La technologie des tapis roulants convoyeurs
Tampons amortisseurs de choc

Généralités

Les tampons amortisseurs de choc en polyuréthane élastomère cellulaire Diepocell® sont utilisés dans l’ingénierie mécanique en général et pour la construction de ponts roulants.

Diepocell® est un polyuréthane élastomère cellulaire qui a d’excellentes propriétés d’amortissement, avec une déformation minimale. Il est donc idéal pour des tampons amortisseurs de choc. Cette matière spécifique leur confère une haute résistance à l’huile, la graisse, l’ozone, les UV et à l’usure. Cette matière peut être utilisée à des températures allant de -35°C à + 80°C. Des pics de courte durée jusqu’à 100°C ne détériore pas la matière.

Les tampons amortisseurs sont fournis avec différents types de fixation : vis centrale (VC), plaque-support carrée (PC), double vis (DV) ou écrou noyé (EN) selon les dimensions détaillées dans les tableaux des pages suivantes. Avec notre méthode spéciale de production, le corps cellulaire est directement moulé à la plaque de fixation. Une attention particulière doit être donnée à notre système breveté de fixation par plaque carrée plastique.

Il est également possible, sur demande, d’ajouter un dispositif de sécurité supplémentaire.

Notre gamme standard de tampons est disponible sur stock de manière générale. D’autres duretés ou d’autres fixations peuvent être produites sur demande selon le domaine d’application. Pour une utilisation en environnement très humide ou climats tropicaux, une matière résistante à l’humidité est disponible.

Pour chaque diamètre de tampon, différentes hauteurs sont disponibles selon les ratios suivants :
• Tampon Modèle 1 Ø: hauteur = 1 : 0,5 (forme cylindrique)
• Tampon Modèle 2 Ø: hauteur = 1 : 1,0 (forme légèrement conique)
• Tampon Modèle 3 Ø: hauteur = 1 : 1,5 (forme cylindrique)
La capacité de travail et les forces d’impact pour chaque tampon sont reportées dans le tableau page 3 ou sur les courbes pages 9 à 19.

Pour une utilisation sur des ponts roulants, il est possible d’adapter un tampon sur le pont et un autre en fin de rail afin de réduire les forces finales. Pour éviter la déformation du tampon, seules les combinaisons suivantes sont recommandées :
• Tampon Modèle 1: contre modèles 1, 2, 3
• Tampon Modèle 2: contre modèles 1, 2
• Tampon Modèle 3: contre modèle 1

Remarques importantes pour l’installation :
• Compression maximale du tampon : 80% de sa hauteur
• Déformation maximale : jusqu’à 50% du diamètre du tampon
• La zone d’impact que le tampon vient heurter doit être d’au moins 1,5 fois le diamètre du tampon lorsque celui-ci n’est pas opposé à un autre tampon de plastique cellulaire de même diamètre.

Les instructions de montage sont disponibles sur demande.
Tampons amortisseurs de choc

<table>
<thead>
<tr>
<th>Tampon N°</th>
<th>Modèle N°</th>
<th>Dimensions ø x L (mm)</th>
<th>Force Finale [KN] Statique</th>
<th>Absorption d’énergie [kJ] Vitesse [m/s]</th>
<th>compression max. [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 2</td>
<td>70 x 70</td>
<td>24 26 30 35 38</td>
<td></td>
<td></td>
<td>56</td>
</tr>
<tr>
<td>1 1</td>
<td>80 x 40</td>
<td>0,46 0,59 0,67 0,84 1,00</td>
<td></td>
<td></td>
<td>32</td>
</tr>
<tr>
<td>2 2</td>
<td>80 x 80</td>
<td>0,37 0,47 0,54 0,67 0,80</td>
<td></td>
<td></td>
<td>64</td>
</tr>
<tr>
<td>3 3</td>
<td>80 x 120</td>
<td>0,7 0,89 1,02 1,28 1,52</td>
<td></td>
<td></td>
<td>96</td>
</tr>
<tr>
<td>4 1</td>
<td>100 x 50</td>
<td>50 65 70 80 90</td>
<td></td>
<td></td>
<td>40</td>
</tr>
<tr>
<td>5 2</td>
<td>100 x 100</td>
<td>0,69 0,88 1,00 1,25 1,50</td>
<td></td>
<td></td>
<td>80</td>
</tr>
<tr>
<td>6 3</td>
<td>100 x 150</td>
<td>50 65 70 80 90</td>
<td></td>
<td></td>
<td>120</td>
</tr>
<tr>
<td>7 1</td>
<td>125 x 63</td>
<td>65 80 95 110 120</td>
<td></td>
<td></td>
<td>120</td>
</tr>
<tr>
<td>8 2</td>
<td>125 x 125</td>
<td>65 80 95 110 120</td>
<td></td>
<td></td>
<td>120</td>
</tr>
<tr>
<td>9 3</td>
<td>125 x 190</td>
<td>65 80 95 110 120</td>
<td></td>
<td></td>
<td>120</td>
</tr>
<tr>
<td>10 1</td>
<td>160 x 80</td>
<td>123 147 172 186 200</td>
<td></td>
<td></td>
<td>64</td>
</tr>
<tr>
<td>11 2</td>
<td>160 x 160</td>
<td>123 147 172 186 200</td>
<td></td>
<td></td>
<td>128</td>
</tr>
<tr>
<td>12 3</td>
<td>160 x 240</td>
<td>123 147 172 186 200</td>
<td></td>
<td></td>
<td>192</td>
</tr>
<tr>
<td>13 1</td>
<td>200 x 100</td>
<td>190 230 270 300 315</td>
<td></td>
<td></td>
<td>80</td>
</tr>
<tr>
<td>14 2</td>
<td>200 x 200</td>
<td>190 230 270 300 315</td>
<td></td>
<td></td>
<td>160</td>
</tr>
<tr>
<td>15 3</td>
<td>200 x 300</td>
<td>190 230 270 300 315</td>
<td></td>
<td></td>
<td>240</td>
</tr>
<tr>
<td>16 1</td>
<td>250 x 125</td>
<td>275 300 350 400 490</td>
<td></td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>17 2</td>
<td>250 x 250</td>
<td>275 300 350 400 490</td>
<td></td>
<td></td>
<td>200</td>
</tr>
<tr>
<td>18 3</td>
<td>250 x 375</td>
<td>275 300 350 400 490</td>
<td></td>
<td></td>
<td>300</td>
</tr>
<tr>
<td>19 1</td>
<td>315 x 158</td>
<td>650 717 728 750 780</td>
<td></td>
<td></td>
<td>126</td>
</tr>
<tr>
<td>20 2</td>
<td>315 x 315</td>
<td>650 717 728 750 780</td>
<td></td>
<td></td>
<td>252</td>
</tr>
<tr>
<td>21 3</td>
<td>315 x 475</td>
<td>650 717 728 750 780</td>
<td></td>
<td></td>
<td>380</td>
</tr>
<tr>
<td>22 1</td>
<td>400 x 200</td>
<td>1000 1100 1150 1200 1250</td>
<td></td>
<td></td>
<td>160</td>
</tr>
<tr>
<td>23 2</td>
<td>400 x 400</td>
<td>1000 1100 1150 1200 1250</td>
<td></td>
<td></td>
<td>320</td>
</tr>
<tr>
<td>24 3</td>
<td>400 x 600</td>
<td>1000 1100 1150 1200 1250</td>
<td></td>
<td></td>
<td>480</td>
</tr>
<tr>
<td>25 1</td>
<td>500 x 250</td>
<td>1500 1700 1800 1900 1950</td>
<td></td>
<td></td>
<td>200</td>
</tr>
<tr>
<td>26 2</td>
<td>500 x 500</td>
<td>1500 1700 1800 1900 1950</td>
<td></td>
<td></td>
<td>400</td>
</tr>
<tr>
<td>27 3</td>
<td>500 x 750</td>
<td>1500 1700 1800 1900 1950</td>
<td></td>
<td></td>
<td>600</td>
</tr>
<tr>
<td>28 1</td>
<td>600 x 300</td>
<td>2500 2650 2700 2750 2800</td>
<td></td>
<td></td>
<td>240</td>
</tr>
<tr>
<td>29 2</td>
<td>600 x 600</td>
<td>2500 2650 2700 2750 2800</td>
<td></td>
<td></td>
<td>480</td>
</tr>
<tr>
<td>30 3</td>
<td>600 x 900</td>
<td>2500 2650 2700 2750 2800</td>
<td></td>
<td></td>
<td>720</td>
</tr>
</tbody>
</table>
Tampons amortisseurs de choc
avec plaque carrée

Modèles avec plaque aluminium

<table>
<thead>
<tr>
<th>Tampon N°</th>
<th>Modèle N°</th>
<th>Référence Article</th>
<th>Dimensions (mm)</th>
<th>Poids (Kgs)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Diamètre du tampon (D)</td>
<td>Hauteur du tampon (H)</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>PC 080/040</td>
<td>80</td>
<td>40</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>PC 080/080</td>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>PC 080/120</td>
<td>80</td>
<td>120</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>PC 100/050</td>
<td>100</td>
<td>50</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>PC 100/100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>PC 100/150</td>
<td>100</td>
<td>150</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>PC 125/063</td>
<td>125</td>
<td>63</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>PC 125/125</td>
<td>125</td>
<td>125</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td>PC 125/190</td>
<td>125</td>
<td>190</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>PC 160/080</td>
<td>160</td>
<td>80</td>
</tr>
<tr>
<td>11</td>
<td>2</td>
<td>PC 160/160</td>
<td>160</td>
<td>160</td>
</tr>
<tr>
<td>12</td>
<td>3</td>
<td>PC 160/240</td>
<td>160</td>
<td>240</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>PC 200/100</td>
<td>200</td>
<td>100</td>
</tr>
<tr>
<td>14</td>
<td>2</td>
<td>PC 200/200</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>15</td>
<td>3</td>
<td>PC 200/300</td>
<td>200</td>
<td>300</td>
</tr>
</tbody>
</table>
Tampons amortisseurs de choc
avec plaque carrée

Modèles avec plaque plastique (sur demande)

<table>
<thead>
<tr>
<th>Tampon N°</th>
<th>Modèle N°</th>
<th>Référence Article</th>
<th>Dimensions (mm)</th>
<th>Poids (Kgs)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Diamètre du tampon (D)</td>
<td>Hauteur du tampon (H)</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>sur demande</td>
<td>80</td>
<td>40</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>sur demande</td>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>sur demande</td>
<td>80</td>
<td>120</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>sur demande</td>
<td>100</td>
<td>50</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>sur demande</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>sur demande</td>
<td>100</td>
<td>150</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>sur demande</td>
<td>125</td>
<td>63</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>sur demande</td>
<td>125</td>
<td>125</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td>sur demande</td>
<td>125</td>
<td>190</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>sur demande</td>
<td>160</td>
<td>80</td>
</tr>
<tr>
<td>11</td>
<td>2</td>
<td>sur demande</td>
<td>160</td>
<td>160</td>
</tr>
<tr>
<td>12</td>
<td>3</td>
<td>sur demande</td>
<td>160</td>
<td>240</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>sur demande</td>
<td>200</td>
<td>100</td>
</tr>
<tr>
<td>14</td>
<td>2</td>
<td>sur demande</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>15</td>
<td>3</td>
<td>sur demande</td>
<td>200</td>
<td>300</td>
</tr>
</tbody>
</table>

Modèle avec plaque acier

<table>
<thead>
<tr>
<th>Tampon N°</th>
<th>Modèle N°</th>
<th>Référence Article</th>
<th>Dimensions (mm)</th>
<th>Poids (Kgs)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Diamètre du tampon (D)</td>
<td>Hauteur du tampon (H)</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>PC 250/125</td>
<td>250</td>
<td>125</td>
</tr>
<tr>
<td>17</td>
<td>2</td>
<td>PC 250/250</td>
<td>250</td>
<td>250</td>
</tr>
<tr>
<td>18</td>
<td>3</td>
<td>PC 250/375</td>
<td>250</td>
<td>375</td>
</tr>
<tr>
<td>19</td>
<td>1</td>
<td>PC 315/158</td>
<td>315</td>
<td>158</td>
</tr>
<tr>
<td>20</td>
<td>2</td>
<td>PC 315/315</td>
<td>315</td>
<td>315</td>
</tr>
<tr>
<td>21</td>
<td>3</td>
<td>PC 315/475</td>
<td>315</td>
<td>475</td>
</tr>
<tr>
<td>22</td>
<td>1</td>
<td>PC 400/200</td>
<td>400</td>
<td>200</td>
</tr>
<tr>
<td>23</td>
<td>2</td>
<td>PC 400/400</td>
<td>400</td>
<td>400</td>
</tr>
<tr>
<td>24</td>
<td>3</td>
<td>PC 400/600</td>
<td>400</td>
<td>600</td>
</tr>
<tr>
<td>25</td>
<td>1</td>
<td>PC 500/250</td>
<td>500</td>
<td>250</td>
</tr>
<tr>
<td>26</td>
<td>2</td>
<td>PC 500/500</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>27</td>
<td>3</td>
<td>PC 500/750</td>
<td>500</td>
<td>750</td>
</tr>
<tr>
<td>28</td>
<td>1</td>
<td>PC 600/300</td>
<td>600</td>
<td>300</td>
</tr>
<tr>
<td>29</td>
<td>2</td>
<td>PC 600/600</td>
<td>600</td>
<td>600</td>
</tr>
<tr>
<td>30</td>
<td>3</td>
<td>PC 600/900</td>
<td>600</td>
<td>900</td>
</tr>
</tbody>
</table>
Tampons amortisseurs de choc avec double vis

<table>
<thead>
<tr>
<th>Tampon N°</th>
<th>Modèle N°</th>
<th>Référence Article</th>
<th>Dimensions (mm)</th>
<th>Poids (Kgs)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Diamètre du tampon (D)</td>
<td>Hauteur du tampon (H)</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>DV 100/050</td>
<td>100</td>
<td>50</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>DV 100/100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>DV 100/150</td>
<td>100</td>
<td>150</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>DV 125/063</td>
<td>125</td>
<td>63</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>DV 125/125</td>
<td>125</td>
<td>125</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>DV 125/190</td>
<td>125</td>
<td>190</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>DV 160/080</td>
<td>160</td>
<td>80</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>DV 160/160</td>
<td>160</td>
<td>160</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td>DV 160/240</td>
<td>160</td>
<td>240</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>DV 200/100</td>
<td>200</td>
<td>100</td>
</tr>
<tr>
<td>11</td>
<td>2</td>
<td>DV 200/200</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>12</td>
<td>3</td>
<td>DV 200/300</td>
<td>200</td>
<td>300</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>DV 250/125</td>
<td>250</td>
<td>125</td>
</tr>
<tr>
<td>14</td>
<td>2</td>
<td>DV 250/250</td>
<td>250</td>
<td>250</td>
</tr>
<tr>
<td>15</td>
<td>3</td>
<td>DV 250/375</td>
<td>250</td>
<td>375</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>DV 315/158</td>
<td>315</td>
<td>158</td>
</tr>
<tr>
<td>17</td>
<td>2</td>
<td>DV 315/315</td>
<td>315</td>
<td>315</td>
</tr>
<tr>
<td>18</td>
<td>3</td>
<td>DV 315/475</td>
<td>315</td>
<td>475</td>
</tr>
<tr>
<td>19</td>
<td>1</td>
<td>DV 400/200</td>
<td>400</td>
<td>200</td>
</tr>
<tr>
<td>20</td>
<td>2</td>
<td>DV 400/400</td>
<td>400</td>
<td>400</td>
</tr>
<tr>
<td>21</td>
<td>3</td>
<td>DV 400/600</td>
<td>400</td>
<td>600</td>
</tr>
</tbody>
</table>
Tampons amortisseurs de choc

Avec vis centrale

<table>
<thead>
<tr>
<th>Tampon N°</th>
<th>Modèle N°</th>
<th>Dimensions (mm)</th>
<th>Tampon avec Vis Centrale</th>
<th>Tampon avec Ecrou Noyé</th>
<th>Poids (Kgs)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Diamètre du tampon (D)</td>
<td>Hauteur du tampon (H)</td>
<td>Référence Article</td>
<td>Filetage (M)</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>70</td>
<td>70</td>
<td>VC.070/070</td>
<td>M 12</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>80</td>
<td>40</td>
<td>VC.080/040</td>
<td>M 12</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>80</td>
<td>80</td>
<td>VC.080/080</td>
<td>M 12</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>80</td>
<td>120</td>
<td>VC.080/120</td>
<td>M 12</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>100</td>
<td>50</td>
<td>VC.100/050</td>
<td>M 12</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>100</td>
<td>100</td>
<td>VC.100/100</td>
<td>M 12</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>100</td>
<td>150</td>
<td>VC.100/150</td>
<td>M 12</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>125</td>
<td>63</td>
<td>VC.125/063</td>
<td>M 12</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>125</td>
<td>125</td>
<td>VC.125/125</td>
<td>M 12</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td>125</td>
<td>190</td>
<td>VC.125/190</td>
<td>M 12</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>160</td>
<td>80</td>
<td>VC.160/080</td>
<td>M 12</td>
</tr>
<tr>
<td>11</td>
<td>2</td>
<td>160</td>
<td>160</td>
<td>VC.160/160</td>
<td>M 12</td>
</tr>
<tr>
<td>12</td>
<td>3</td>
<td>160</td>
<td>240</td>
<td>VC.160/240</td>
<td>M 12</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>200</td>
<td>100</td>
<td>VC.200/100</td>
<td>M 12</td>
</tr>
<tr>
<td>14</td>
<td>2</td>
<td>200</td>
<td>200</td>
<td>VC.200/200</td>
<td>M 12</td>
</tr>
<tr>
<td>15</td>
<td>3</td>
<td>200</td>
<td>300</td>
<td>VC.200/300</td>
<td>M 12</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>250</td>
<td>125</td>
<td>VC.250/125</td>
<td>M 24</td>
</tr>
<tr>
<td>17</td>
<td>2</td>
<td>250</td>
<td>250</td>
<td>VC.250/250</td>
<td>M 24</td>
</tr>
<tr>
<td>18</td>
<td>3</td>
<td>250</td>
<td>375</td>
<td>VC.250/375</td>
<td>M 24</td>
</tr>
<tr>
<td>19</td>
<td>1</td>
<td>315</td>
<td>158</td>
<td>VC.315/158</td>
<td>M 24</td>
</tr>
<tr>
<td>20</td>
<td>2</td>
<td>315</td>
<td>315</td>
<td>VC.315/315</td>
<td>M 24</td>
</tr>
<tr>
<td>21</td>
<td>3</td>
<td>315</td>
<td>475</td>
<td>VC.315/475</td>
<td>M 24</td>
</tr>
<tr>
<td>22</td>
<td>1</td>
<td>400</td>
<td>200</td>
<td>VC.400/200</td>
<td>M 30</td>
</tr>
<tr>
<td>23</td>
<td>2</td>
<td>400</td>
<td>400</td>
<td>VC.400/400</td>
<td>M 30</td>
</tr>
<tr>
<td>24</td>
<td>3</td>
<td>400</td>
<td>600</td>
<td>VC.400/600</td>
<td>M 30</td>
</tr>
</tbody>
</table>
Tampons amortisseurs de choc

Méthode de calcul et sélection

Masse arrêtée

\[W = \frac{1}{2} m v^2 \]

Masse contre masse

\[W = m_1 m_2 (v_1 + v_2)^2 \frac{2}{(m_1 + m_2)^2} \]

\[m_1 = m_2 \text{ und } v_1 = v_2 \]

\[W = m v^2 \]

Masse guidée arrêtée

Masse en chute libre

\[W = m g h \]

Cette formule ne s'applique pas aux ascenseurs

Tampon de pont roulant

\[W_B = \frac{1}{2} m_B v^2 \]

\[m_B = \frac{m_{Kr}}{2} + \frac{m_{Ka}}{m_{Ka}} (L - I_1) \]

Formule de calcul de décélération

\[a_{mitt} = \frac{V^2}{2l} \quad a_{max} = \frac{F}{m} \]

- désaccélération moyenne (m/s²)
- désaccélération maximale (m/s²)
- F₀ = Force à l’impact (kN/m)
- F = Force finale (kN)
- f = Compression du tampon (mm)
- f' = Compression effective (mm)
- g = Gravité (9.81 m/s²)
- h = Distance de chute (m)
- L = Distance entre rails A et B (m)
- l = Distance m_{Ka} à B (m)
- m = Masse (Kg)
- m_{Kr} = Masse du pont avec chariot (Kg)
- m_{Ka} = Masse du chariot (Kg)
- m_{1}/m_{2} = Masse des corps 1 ou 2 (Kg)
- m_B = Masse au rail B (Kg)
- v = Vitesse d’impact (m/s)
- v/2 = Vitesse de 1 ou 2 (m/s)
- W = Énergie cinétique (Nm)
- W₀ = Énergie de F₀ (Nm)
- Wadm = Énergie permise (Nm)

- mouvement pendulaire de charge non requis
- puissance moteur requise
- vitesse réduite selon DIN 15018
 - v = 100% de la vitesse nominale des chariots
 - v = 85% de la vitesse nominale des ponts
 - v = 70% de la vitesse nominale des ponts avec dispositif de freinage.
Tampons amortisseurs de choc

Méthode de calcul pour déterminer le tampon requis

Application: Masse arrêtée

Formule: \(W = \frac{1}{2} m \times v^2 \)

Exemple:
\[m = 2490 \text{ Kgs} \]
\[v = 4,0 \text{ m/s} \]

Calcul:
\[W = \frac{1}{2} \times 2490 \text{ Kg} \times (4,0 \text{ m/s})^2 \]
\[W = 19920 \text{ Nm [J]} \]
\[W = 19.92 \text{ KNm [KJ]} \]

Dimensions Tampon recommandé:

200 x 200

Absorption d’énergie en KJ

Force finale en KN

70 x 70

Absorption d’énergie en KJ

Force finale en KN
Tampons amortisseurs de choc en polyuréthane élastomère

80 x 40

Absorption d'énergie en KJ

80 x 80

Absorption d'énergie en KJ

80 x 120

Absorption d'énergie en KJ
- Tampons amortisseurs de choc en polyuréthane élastomère -

Absorption d'énergie en KJ

Force finale en KN

Absorption d'énergie en KJ

Force finale en KN

Absorption d'énergie en KJ

Force finale en KN

Absorption d'énergie en KJ

Force finale en KN
-Tampons amortisseurs de choc en polyuréthane élastomère -

250 x 125

- Absorption d'énergie en KJ
- Force finale en KN

250 x 250

- Absorption d'énergie en KJ
- Force finale en KN

250 x 375

- Absorption d'énergie en KJ
- Force finale en KN
Tampons amortisseurs de choc en polyuréthane élastomère

Absorption d'énergie en KJ

400 x 200

400 x 400

400 x 600

Force finale en KN

Absorption d'énergie en KJ
Tampons amortisseurs de choc en polyuréthane élastomère,

Absorption d'énergie en KJ

Force finale en KN

500 x 250

500 x 500

500 x 750

SEDITEC
Tampons amortisseurs de choc en polyuréthane élastomère.

<table>
<thead>
<tr>
<th>Compression en mm</th>
<th>Force finale en kN</th>
<th>Absorption d'énergie en kJ</th>
</tr>
</thead>
<tbody>
<tr>
<td>V = 4 m/s</td>
<td>V = 3 m/s</td>
<td>V = 2 m/s</td>
</tr>
<tr>
<td>V = 1 m/s</td>
<td>static</td>
<td></td>
</tr>
</tbody>
</table>

forces finales en kN et absorption d'énergie en kJ.